
Quantum Mechanics M.T. 2002

J.F. Wheater

Problems

These problems cover all the material we will be studying in the lectures this
term. The Synopsis tells you which problems are associated with which lectures.

Some of the problems have a double dagger ††; they are a bit more challenging
but if you can do them you’re really on top of the subject. Some of the problems
have a single dagger †. They are straightforward extensions and applications of
things we will do in the lectures; first time round they will take you some time and
may raise difficulties that you’ll need to discuss with your tutor but in a couple of
years time they’ll seem really easy! Finally there are problems with no daggers;
these are either really easy or pretty much the same as problems we’ve done in the
lectures. If you’re paying attention you should be able to do them.

There are quite a lot of these problems, more than most of you will manage to
do by the end of term, and your tutor may well tell you to do just a subset of them
to start with. Still I hope that in the end you will try most of them, perhaps over
the vac.

1 Orders of Magnitude

1. Quanta of radiation

A beam of ultraviolet light of wavelength λ = 124 nm and intensity 1.6 ×
10−12 W m−2 is suddenly turned on and falls on a metal surface, ejecting elec-
trons through the photo-electric effect. The beam has a cross-sectional area of
10−4m2 and the work function of the metal is 5 eV. Estimate the time delay
before the first photoelectron appears by the following approaches:

(a) A crude estimate using classical physics is to calculate the time needed for
the work function energy to be accumulated over the area of one atom (radius
≈ 10−10 m).

(b) Lord Rayleigh showed that this is a bit pessimistic and that a better esti-
mate of the effective area (or scattering cross section) that the atom presents
is λ2. Use this to revise your estimate of the time delay.

(c) In the quantum approach, emission can occur as soon as the first photon
arrives (why?). To obtain a time delay that can be compared to these classical
estimates, calculate the average time interval between arrival of successive
photons.

2. Matter waves

The single-slit diffraction pattern for a monochromatic wave of wavelength λ
incident normally on a narrow slit of width a is described (in the “Fraunhofer
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region”) by the intensity

I(θ) = I(0)
sin2[(πa/λ) sin θ]

[(πa/λ) sin θ]2
(1)

where θ is the deflection angle perpendicular to the incident wavefront. (We’ll
see how to derive this later in Question 5.4.)

(i) What is the value of I(θ) as θ → 0?

(ii) Sketch the form of I(θ) versus θ for the particular case λ = a/2. How does
the sketch change as λ decreases? Show that the intensity peak centred on
θ = 0 falls to half its central intensity at

θ = sin−1(0.443λ/a). (2)

(iii) Nuclear reactors provide high fluxes of neutrons with energies ∼ 10−2 or
10−3eV . For neutrons with an energy of 4.18 x 10−3 eV, what is (a) their
speed, (b) their wavelength?

(iv) In an experiment (C. G. Schull, Physical Review 179 (1969) 752-754)
neutrons of energy 4.18 x 10−3 eV were incident on a slit of width 5.6 µm. It
was found that the full width at half maximum of the central intensity peak
(measured downstream from the slit) was 15.4 arc seconds. Is this consistent
with the above diffraction formula I(θ)?

3. The importance of h̄

Planck’s constant h̄ is equal to 1.0 × 10−34 Js, to two significant figures. A
system (e.g. a mechanical watch) has moving parts of size d and mass m, and
the movement occurs on a characteristic timescale τ .

(i) Construct a quantity, call it S, having the same dimensions as h̄ from d,
m and τ (such quantities are said to have the dimensions of action). The rule
of thumb is that if S has numerical value much bigger than h̄ then quantum
effects are negligible.

(ii) Evaluate your S and compare it to h̄ for
a) The final stage of a turbofan engine (the thing that makes an aircraft fly;
typically the final stage turbine rotates at an incredible 30,000 rpm!).
b) The motion of a mechanical wristwatch.
c) A bacteria “swimming”.

(iii) Now take d to be a typical atomic size, and m to be the electron mass.
Find τ such that your action quantity is equal to h̄ in this case. Defining an
average velocity by v = d/τ , calculate the corresponding kinetic energy of the
electron, in eV.

4. Microscopes using waves with wavelength λ can resolve objects roughly as
small as λ but no smaller. Determine the kinetic energy of electrons in an
electron microscope needed to resolve
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(i) a DNA molecule ( 10−8m )

(ii) a proton (10−15m).

[Use the de Broglie relation λ = h/p; in each case consider whether you should
use the non-relativistic expression T = p2/2m for the kinetic energy T , or the
relativistic one T +mc2 = [m2c4 + c2p2]1/2.

2 Time Dependent Schrödinger Equation

The 1-D TDSE is

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t). (3)

1. Einstein - de Broglie - Schrödinger waves

A plane wave solution of the time-dependent Schrödinger equation in one
dimension is given by

ψ(x, t) = Aeikx−iωt. (4)

(i) By substituting this solution into the TDSE for the case that V (x) = 0
find the relation between ω and k for such waves.

(ii) The “phase velocity” vp is defined to be ω/k and the “group velocity” vg is
defined to be dω/dk. Find expressions for vp and vg in terms of the “particle
velocity” defined by v = p/m. Are the results what you expect, and why?

2. Probability interpretation of the wavefunction

In Max Born’s original paper (Zeitschrift für Physik 37 863-67 (1926)) the
sentences proposing the probability interpretation of the wavefunction read
as follows (quoting from the English translation, printed in “Quantum The-
ory and Measurement”, Edited by J A Wheeler and W H Zurek, Princeton
University Press, 1983, pages 52-55):

“If one translates this result into terms of particles, only one interpretation is
possible. Φητm(α, β, γ) [the wavefunction for the particular problem he is con-
sidering] gives the probability *for the electron, arriving from the z-direction,
to be thrown out into the direction designated by the angles α, β, γ ... .

* Addition in proof: More careful considerations show that the probability is
proportional to the square of the quantity Φητm. ”

Give as many “considerations” as you can why a general wavefunction ψ does
not have suitable properties to be interpreted as a probability density, but the
square modulus |ψ|2 does.

3. Continuous probability distributions

For a certain continuous variable x, the probability that it has a value lying
between x and x+ dx is ρ(x)dx. The possible values of x range from a to b.
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(i) What conditions must ρ(x) satisfy?

(ii) Define the average value 〈f(x)〉 of a function of x, f(x).

(iii) The variance of the distribution is σ2, defined by σ2 = 〈(x−〈x〉)2〉. Show
that σ2 = 〈x2〉−(〈x〉)2. (A customary measure of the “spread” of a distribution
is σ, which by the above result is equal to [〈x2〉 − (〈x〉)2]1/2. Frequently this
may be written as ∆x.)

4. Solutions of the TDSE separated in x and t

Consider solutions in which the x- and t- dependence is separated ie we write
ψ(x, t) = φ(x)× T (t).

(i) Show that

1

T (t)
ih̄
dT (t)

dt
=

1

φ(x)

(
− h̄2

2m

d2φ(x)

dx2

)
+ V (x) (5)

and explain why each side of this equation must equal the same constant “A”.

(ii) Solve the T -equation for T (t) given that T (0) = 1. Show that if A is real,
| ψ(x, t) |2 is independent of t. What is the frequency ω of the wave in terms of
A? Assuming the Einstein relation E = h̄ω, find E in terms of A, and obtain
an expression for the average value of x. Such solutions are called stationary
state solutions : why? Do all wavefunctions have to satisfy the TISE?

(iii) Suppose V depends on t as well as on x: V (x, t). Will such a separation
of the x and t variables be possible, in general? Can you invent a V (x, t) for
which it would be mathematically possible (even if not physically sensible)?

(iv) Returning to the case V (x), suppose A is in fact complex, A = E − iΓ/2.
Show that the total (integrated over x) probability decays exponentially with
a half-life of (h̄ln2)/Γ. Suggest a physical problem in which such a solution
might be useful.

3 Particle in a Box

1. Necessary integrals

You will need certain integrals repeatedly over the next few weeks. They are
given here; make sure that you can do them and then keep this piece of paper
handy. ∫ a

0
sin

(
nπx

a

)
sin

(
mπx

a

)
=
{ a

2
, if n = m;

0, otherwise.
(6)

∫ a

0
sin

(
nπx

a

)
cos

(
mπx

a

)
=

{
2an

π(n2−m2)
, if n+m is odd;

0, otherwise.
(7)

2. Particle in a box: average values

Consider the particle in the infinitely deep square well potential (V = 0 for
0 < x < a, V =∞ for x ≤ 0, x ≥ a).
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(i) Show that the allowed energy values are En = h̄2n2π2/2ma2 for n = 1, 2, . . .
and that the associated normalised eigenfunctions are

φn(x) =

√
2

a
sin

(
nπx

a

)
(8)

Why is there no state with E = 0? What does it mean to say that the φn are
orthogonal?

(ii) Show qualitatively by means of a sketch that the eigenfunctions φ1(x) and
φ2(x) are orthogonal.

(iii) For a particle with energy E1, calculate the quantum-mechanical expec-
tation value of x, denoted by 〈x〉.
(iv) Without working out any integrals, show that 〈(x− 〈x〉)2〉 = 〈x2〉 − a2/4.
Hence find 〈(x− 〈x〉)2〉 using the result

∫ a

0
x2 sin2

(
nπx

a

)
dx =

a3

6
− a3

4n2π2
. (9)

(v) A classical analogue of this problem is that of a particle bouncing back
and forth between two perfectly elastic walls, with uniform velocity between
bounces. Calculate the classical averages values 〈x〉c and 〈(x − 〈x〉c)2〉c, and
show that for high values of n the quantum and classical results tend to each
other.

3. †Superposition of eigenfunctions

Suppose the state is described at time t = 0 by the wavefunction

ψ(x, t = 0) =
1√
2

(φ1(x) + φ2(x)) (10)

i) Show that ψ is correctly normalized.

ii) Show that this is not an energy eigenfunction. What are the possible results
of a measurement of the energy of the particle, what are the corresponding am-
plitudes, and what are the corresponding probabilities? What do you expect
the expectation value of the energy to be?

iii) Repeat (ii) but with the wavefunction

ψ′(x, t = 0) =
1√
2

(
φ1(x) + eiθφ2(x)

)
(11)

iv) Reverting to ψ, explain why at subsequent times the wavefunction is given
by

ψ(x, t) =
1√
2

(
φ1(x)e−iE1t/h̄ + φ2(x)e−iE2t/h̄

)
(12)
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Does the outcome of a measurement of the energy of the particle depend on
when the measurement is made?

v) Show that

|ψ(x, t)|2 =
1

a

{
sin2

(
πx

a

)
+ sin2

(
2πx

a

)
+ 2 sin

(
πx

a

)
sin

(
2πx

a

)
cosωt

}
(13)

where ω = (E2 − E1)/h̄ = 3E1/h̄. Make rough sketches of |ψ|2 for t = 0,
t = h/12E1, t = h/6E1, t = h/4E1. Does the outcome of a measurement of
the position of the particle depend on when the measurement is made?

vi) Given that ∫ a

0
x sin

(
πx

a

)
sin

(
2πx

a

)
dx = −8a2

9π2
, (14)

show that a particle with this wavefunction has 〈x〉 = a/2 - (16a/9π2)cosωt.
Discuss the connection between this result and the sketches of |ψ|2.

vii) What is the value of ω for an electron confined to a distance comparable
to the size of an atom (say 10−10 m)? What is the wavelength of radiation
having this (circular) frequency?

4 Operators, Expectation Values, Conservation

Laws

1. Hermitian Operators

Why are dynamical quantities (energy, momentum ...) represented by Hermi-
tian operators in quantum mechanics?

The Hermitian conjugate A† of a differential operator A is defined via its
matrix elements between arbitrary wavefunctions φ1 and φ2,∫ ∞

−∞
φ∗1(x)A†φ2(x)dx

def
=

∫ ∞
−∞

(Aφ1(x))∗ φ2(x)dx (15)

provided φ1 and φ2 vanish at x = ± ∞. Show that(
∂

∂x

)†
= − ∂

∂x
(16)

(you will need to do an integration by parts - see Rae p67,68) and

(
∂2

∂x2

)†
=

∂2

∂x2
(17)

Deduce from (16) that the momentum operator −ih̄(∂/∂x) is Hermitian and
from (17) that the kinetic energy operator is Hermitian.
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2. Eigenfunctions

(i) Is eipx/h̄ + e−ipx/h̄ an eigenfunction of momentum? Is it an eigenfunction of
kinetic energy?

(ii) Is e−|x|/a an eigenfunction of momentum? (Careful: a sketch and some
thought is the best approach).

3. Probability current density and the 1-D barrier

Derive the continuity equation relating the rate of change of probability density
ψ∗ψ to the gradient of a probability current density j, and find the expression
for j. Find j for the plane wave solution ψ(x, t) = A eikx−iωt and express your
answer in terms of the particle velocity p/m. [Note: A is in general complex].

Particles of mass m and energy E are incident from the region x < 0 on the
“finite step” potential V (x) = 0 for x ≤ 0, V (x) = V0 for x > 0, with V0 > E.

(i) Explain why the solution of the time independent Schrodinger equation
in the region x ≤ 0 may be taken to have the form φ1(x) = eikx + re−ikx

where k = (2mE/h̄2)
1
2 , and why the solution in the region x > 0 has the form

φ2(x) = ae−Kx where K = [2m(V0 − E)/h̄2]
1
2 .

(ii) By imposing suitable boundary conditions at x = 0 show that

r =
k − iK
k + iK

, a =
2k

k + iK
. (18)

(iii) Is your solution for the wavefunction an energy eigenstate? Is it a mo-
mentum eigenstate?

(iv) Compute the probability current density in the two regions. Discuss your
result.

(v) Show that r can be written as e−2iα where α = tan−1(K/k), and hence
show that

|φ1(x)|2 = 4 cos2(kx+ α). (19)

Make two separate sketches, for the special cases E = V0/2 and E = V0, of
|φ1|2, and of |φ2|2, showing how they match at x = 0.

(vi) Estimate the penetration distance into the region x > 0 for an electron
with V0 − E = 1eV.

4. †Equations of motion for expectation values

Prove that
d

dt
〈ψ|A|ψ〉 =

i

h̄
〈ψ|[H,A]|ψ〉 (20)

where A is any operator (not explicitly depending on t) representing an ob-
servable dynamical quantity. You can do this either by writing out 〈ψ|A|ψ〉
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as an integral, and differentiating with respect to time or directly in the Dirac
notation by using

ih̄
∂

∂t
|ψ〉 = H|ψ〉

−ih̄ ∂
∂t
〈ψ| = 〈ψ|H (21)

What is the corresponding result if the operator A does depend explicitly on
t?

5. †Commutators and Consequences

i) Verify that if the momentum operator p is represented by −ih̄(∂/∂x) (in
one dimension) acting on wavefunctions, then

[p, x]φ(x) = −ih̄φ(x) (22)

for any differentiable wavefunction φ(x), where [A,B] means AB −BA.

ii) Find [p, V (x)].

iii) For any operators A,B, verify that

[A,B2] = [A,B]B +B[A,B] (23)

For H = p2

2m
+ V (x) use (23) together with your results for i) and ii) to show

that

[H, x] = −ih̄ p
m

[H, p] = ih̄
dV

dx
(24)

iiiA) Alternatively, if you’re not happy with iii) use the differential operator

representation H = − h̄2

2m
d2

dx2 +V (x) to calculate the commutators (24) directly.

iv) Use the commutators (24) and the equation of motion (20) to show that

d

dt
〈x〉 = 〈 p

m
〉

d

dt
〈p〉 = −〈dV

dx
〉. (25)

v) Let V (x) = 1
2
mω2x2 (ie the S.H.O. potential). Plug this into (25), solve the

resulting differential equations and show that 〈x〉 has the same time dependent
behaviour as x does classically.

6. ††Discuss the relationship between the results (25) and the classical equations
of motion. In classical physics the equations of motion are second order in
time dervatives and we need to specify both the position and the velocity at
t = 0. But the Schrodinger equation is first order in time. Can you resolve
these two facts?
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7. ††Two Particles

The Hamiltonian for two particles of mass m moving in one dimension inter-
acting via their mutual potential energy V (x1 − x2) is given by

H = − h̄2

2m

∂2

∂x2
1

− h̄2

2m

∂2

∂x2
2

+ V (x1 − x2) (26)

where x1 and x2 are the coordinates of the two particles. Show that the total
momentum of the two particles is conserved. [Hint: the total momentum
operator P is P = p1 + p2 where p1 = −ih̄ ∂

∂x1
and similarly for p2.]

8. ††Eigenvalues and Eigenfunctions of Hermitian Operators

In Dirac’s notation if Q is a Hermitian operator then |v〉 = Q|u〉 implies
〈v| = 〈u|Q. Eigenstates of Q are labelled by their eigenvalues q1, . . . and
satisfy Q|qn〉 = qn|qn〉.
Show that 〈u|Q|v〉 = (〈v|Q|u〉)∗ and hence that the eigenvalues of Q must be
real.

Show that when qn 6= qm then 〈qn|qm〉 = 0.

Suppose that |a〉 and |b〉 are eigenstates of Q with the same eigenvalue; then
the previous proof of orthogonality fails. However it is always possible to
construct linear combinations of |a〉 and |b〉, let’s call them |ã〉 and |b̃〉, which
are orthogonal. Do it.

5 Measurement

1. Change of state following a measurement

A particle in the infinite-sided box has the wavefunction (10) at t = 0. At
that time its energy is measured and found to have the value h2/2ma2. What
is the probability of finding the particle in the region 0 ≤ x ≤ a/2 (i) before
the energy measurement? (ii) after it? Explain the answers qualitatively, with
the aid of a sketch.

2. Compatibility

Explain why it is possible to have quantum states for a particle in which the
momentum and the kinetic energy both have well-defined values, but that this
is possible for the momentum and the total energy only if the potential energy
is a constant.

Find a wavefunction (not normalised) such that px = −ih̄ ∂
dx
, py = −ih̄ ∂

∂y
and

pz = −ih̄ ∂
∂z

all have well-defined values, say h̄kx, h̄ky, and h̄kz (i.e. you are
looking for a wavefunction for a particle with definite momentum (vector) h̄k).
Why can all three components of momentum have well-defined values?

Two operators A and B do not commute. Is it true that

[A,B]|ψ〉 6= 0 (27)
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for any state ψ?

3. Uncertainty relations

As a simple example of a time-independent wavepacket, consider the function

φ(x) =
1

2∆k

∫ k0+∆k

k0−∆k
eikxdk (28)

which may be regarded as a superposition of (complex) waves eikx with dif-
ferent k’s, lying within ∆k on either side of a central value k0. Evaluate this
integral and show that

|φ(x)|2 =
sin2(∆k.x)

(∆k.x)2
. (29)

Sketch |φ(x)|2 versus x (recall that ∆k is the spread in the wavenumbers of
the packet). |φ(x)|2 is mostly concentrated in the region bounded by its first
zeros on either side of the origin; if the size of this region is denoted by “∆x”,
show that “∆x” ∆k = 2π. Relate this to the uncertainty relation ∆x∆p ≥ 1

2
h̄.

[The reason we used quotes in “∆x” is that it is not quite the same as the

mathematically precise definition ∆x = [〈(x− 〈x〉)2〉] 1
2 ].

4. †Interference

Consider the two slit interference set-up

Let the amplitude for a particle from the source S to reach slit 1 be 〈1|S〉,
to get from slit 1 to point x on the screen 〈x|1〉 etc. Assume that each slit
is infinitely narrow but that if a particle hits the slit it goes through with
amplitude 1.

i) Write down expressions for the amplitude for a particle to leave S and reach
the point x via slit 1, via slit 2, and via both slits. Explain why the result
of measuring the number of particles arriving at the screen is qualitatively
different when both slits are open compared to when only one slit is open.

ii) Assume that the source is infinitely far away, and that the amplitude for a
particle starting at x1 to end at x2 is

〈x2|x1〉 = |x2 − x1|−1eik.(x2−x1). (30)

Compute exactly the probability distribution P (x) for particles arriving at the
screen.

iii) Now simplify P (x) in the regime L � d and L � x. It is interesting to
look at how the pattern behaves when these simplifying assumptions are not
valid. There is a Maple worksheet at
http://www-thphys.physics.ox.ac.uk/users/JohnWheater to help you do this.

iv) Use similar methods find the single slit diffraction pattern (1).
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5. †The eigenstates of two commuting operators A and B are denoted |a, b〉 and
satisfy the eigenvalue equations A|a, b〉 = a|a, b〉 and B|a, b〉 = b|a, b〉. A
system is set up in the state

|ψ〉 = N (|1, 2〉+ |2, 2〉+ |1, 3〉) (31)

What is the value of the normalization constant N?

A measurement of the value of A yields the result 1. What is the probability
of this happening? What is the new state |ψ′〉 of the system?

Then a measurement of the value of B yields the result 2. What is the prob-
ability of this happening? What is the new state |ψ′′〉 of the system?

Given that the system starts in the state |ψ〉 and then A is measured and then
B is measured what is the probability that it ends up in the state |ψ′′〉?
Repeat the above but measure B first and then A. Comment on your results.

6. ††The operators A and B do not commute. The eigenstates of A are |0〉 and
|1〉 and satisfy A|a〉 = a|a〉. The eigenstates of B are

|±〉 =
1√
2

(|0〉 ± |1〉) (32)

with eigenvalues ±1 respectively.

A system starts in the state |0〉. A measurement of B yields the value +1.
What is the probability of this and what is now the state of the system?

Now a measurement of A is made. What are the possible outcomes and what
state will the system be in afterwards?

Suppose the measurements of A and B are made in the opposite order. Discuss
what happens.

Suppose alternating measurements of A and B are made ad infinitum. Discuss
what happens.

6 The Simple Harmonic Oscillator

1. Eigenfunctions, eigenvalues

The eigenvalue equation for the SHO is(
−h̄2

2m

∂2

∂x2
+

1

2
mω2x2

)
φ = Eφ (33)

where ω is the classical frequency of the oscillator.

i) Show that by making the change of variables x = y
√

h̄
mω

(33) becomes

h̄ω

2

(
− ∂2

∂y2
+ y2

)
φ = Eφ (34)
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ii) Show that φ(y) = e−
y2

2 satisfies the eigenvalue equation for the SHO and
find E. In fact this is the ground state. Show that the correctly normalized
wavefunction is

φ0(x) =
(

1

πa2

) 1
4

exp(−x2/2a2) where a2 = h̄/mω. (35)

iii) Find the expectation values of x, x2, p and p2 for a particle in the ground
state. [Hint: for 〈p2〉 use p2/2m+ 1

2
mω2x2 = E].

iv) Defining ∆x = [〈(x−〈x〉)2〉] 1
2 , ∆p = [〈(p−〈p〉)2〉]1/2 show that in this case

∆x∆p = 1
2
h̄. Comment on this result.

You will need the integrals∫ ∞
−∞

e−αx
2

dx =

√
π

α
;

∫ ∞
−∞

x2e−αx
2

dx =
1

2α

√
π

α
. (36)

2. Pictures

On the same diagram, plot carefully (paying particular attention to the points
of intersection of the various curves)

i) φ0(x) from (35) versus x, indicating where d2φ0

dx2 = 0

ii) the potential energy 1
2
mω2x2 versus x

iii) the total energy E = 1
2
h̄ω versus x

iv) the region in x to which the particle would be confined according to classical
mechanics.

Why do the x-values such that d2φ0

dx2 = 0 lie at the limits of the classically
allowed region?

3. †Spectrum

The form (34) strongly suggests that we should try factorizing the differential
operator. So define

D† =
1√
2

(
− d

dy
+ y

)

D =
1√
2

(
d

dy
+ y

)
(37)

i) Show that

D†Df =
1

2

(
−d

2f

dy
+ y2f − f

)

DD†f =
1

2

(
−d

2f

dy
+ y2f + f

)
(38)
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and hence that (34) may be written

h̄ω
(
D†D +

1

2

)
φ = Eφ (39)

and that
D†D −DD† = −1 (40)

ii) Now assume that φ satisfies (39). Show that φ′ = Dφ also satisfies (39)
but with E replaced by E ′ = E − h̄ω. (Most easily done by acting on (39)
with D and then using the commutator to reverse the order of D and D†.)

iii) Explain why there must be a φ0 satisfying Dφ0 = 0. Writing this condition
out explicitly gives a first order differential equation for φ0; solve it. To what
value of E does φ0 correspond?

iv) Now show that if φ satisfies (39) then φ′ = D†φ also satisfies (39) but with
E replaced by E ′ = E + h̄ω.

v) Now assemble everything to give the spectrum En and a recipe for gener-
ating the eigenfunctions φn. Write out the first three eigenfunctions explicitly
and plot them on a graph.

vi) Is the ground state wavefunction an even or odd function of x? How do
the excited states behave under x → −x? (This property is called the parity
of the state.)

4. ††A slicker way

Of course what we did in the previous question didn’t really depend on a
differential equation; just on the properties of some operators. So actually it
can be done at a more abstract level without reference to differential operators
at all. So let

H =
p2

2m
+
mω2x2

2

A =

√
mω

2
x+ i

p√
2mω

A† =

√
mω

2
x− i p√

2mω
(41)

i) Show that [A,A†] = h̄ and H = ωA†A+ h̄ω/2.

ii) Show that [H,A] = −h̄ωA and [H,A†] = h̄ωA†

iii) Assume that H|ψ〉 = E|ψ〉; show that |ψ′〉 = A|ψ〉 satisfies H|ψ′〉 =
(E − h̄ω)|ψ′〉. Deduce that there must be a state |0〉 satisfying A|0〉 = 0 and
give its energy.

iv) Show that |ψ′〉 = A†|ψ〉 satisfies H|ψ′〉 = (E + h̄ω)|ψ′〉. Now you can
deduce the spectrum En and how the corresponding states |n〉 are related to
|0〉.
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v) It’s easy to compute the correct normalization too. Being careful we have

|n+ 1〉 = CnA
†|n〉 (42)

where the states are all normalised and Cn is a constant. Show that

1 = 〈n+ 1|n+ 1〉 = |Cn|2h̄(n+ 1). (43)

This tells you Cn; find the constant Nn such that

|n〉 = Nn(A†)n|0〉 (44)

is correctly normalized.

7 Barriers and Wavepackets

1. †Momentum probability distribution I

Consider the following two normalised wavefunctions

φ1(x) =
1√
a

exp(−|x|/a), φ2(x) = eikx
1√
a

exp(−|x|/a). (45)

Calculate 〈x〉 and 〈p〉 for both of these wavefunctions.

Sketch |φ1|2 and |φ2|2 versus x for fixed a.

The momentum probability amplitude corresponding to a position probability
amplitude φ(x) is (see Question 7.2)

φ̃(p) =
1√
2πh̄

∫ ∞
−∞

e−ipx/h̄φ(x)dx (46)

Evaluate φ̃1(p) and φ̃2(p) and sketch both as a function of p, for fixed a. Give
an informal (qualitative) definition of the “spreads” of |φ1(x)|2 in x and of
|φ̃1(p)|2 in p. Show that their product is of order h̄.

2. ††Momentum probability distribution II

A particle is in the state |ψ〉. Describe in words what information the ampli-
tude 〈x|ψ〉 contains; what do we usually call this amplitude?

Let |p〉 be an eigenstate of the momentum operator p̂ (contrary to our usual
practice we need a hat on the operator here to avoid getting confused) so that
p̂|p〉 = p|p〉. Describe in words what information the amplitude 〈x|p〉 contains.
Explain why 〈x|p〉 ∝ exp(ipx/h̄).

Describe in words what information the amplitude 〈p|x〉 contains and give its
form as a function of p and x.

Describe in words what information the amplitude 〈p|ψ〉 contains and explain
why

〈p|ψ〉 ∝
∫ ∞
−∞

dx 〈p|x〉〈x|ψ〉, (47)
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which, up to a constant factor, is (46). Confirm that the factor 1/
√

2πh̄ ensures
that ∫ ∞

−∞
|φ̃(p)|2dp = 1 (48)

if φ(x) is normalised. (You’ll need to use the Dirac delta function covered in
the Mathematical Physics lectures.)

3. †The 1-D finite well

Remember that there is a Maple worksheet to do most of the algebra of this
question. You can download it from
http://www-thphys.physics.ox.ac.uk/users/JohnWheater .

A particle of mass m is in a “finite well” potential

V (x) = V0 for |x| > a
= 0 for |x| ≤ a (49)

where V0 is positive. It may be shown that for such a potential, which satisfies
the condition V (−x) = V (x), each energy eigenfunction has a definite parity,
which can be either even (ψ(−x) = ψ(x)) or odd (ψ(−x) = −ψ(x)). (We’ll
meet parity again next term.)

(i) Assuming that the well parameters V0 and a are such that these bound
states are possible, sketch the form of the wavefunctions for the first two
bound states (E < V0) of even parity, and for the first two bound states of odd
parity (not exact wavefunctions; just the right number of wiggles, the right
parity, and the right behaviour at the edge of the well and as x→ ±∞).

(ii) The bound state wavefunction for even parity states has the form

ψ(x) = A cos kx for 0 ≤ x ≤ a (50)

= Be−Kx for x ≥ a, (51)

where k =
(

2mE
h̄2

) 1
2 and K =

√
2m(V0−E)

h̄2 . Write down ψ(x) for −a ≤ x ≤ 0
and for x ≤ −a. By applying the boundary condition at x = a, show that the
allowed k (i.e. E) values are determined by the roots of the equation

(v2 − s2)
1
2 = s tan s (52)

where v = [2mV0a
2/h̄2]

1
2 and s = ka. Check that v and s are dimensionless.

Why is it not necessary to consider the boundary condition at x = −a as well?
This equation (52) can be solved for s, given v, by a graphical method. For

positive s, sketch the function s tan s versus s, and the function (v2 − s2)
1
2

versus s. Where these curves meet, you have a solution for s. Show (a) that
there is always one solution, whatever the value of v; (b) that a second “even”
bound state is possible as soon as v becomes greater than π.

(iii) Write down a similar form of the wavefunction for odd-parity states, and
show that the energy eigenvalue condition is

(v2 − s2)
1
2 = −s cot s (53)
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Sketch both sides of (53) as a function of s, and show that there is no odd-
parity bound state if v < π/2.

(iv) Explain why the number of bound states (even + odd) is given by the next
integer greater than the value of 2v/π (which is called the “well parameter”).

(v) The roots of (52) and (53) can be found by using the fsolve command on
Maple - or by trial and error. Take m = electron mass, a = 0.5 nm and V0 =
20 eV. How many bound states are there?

Verify that the two lowest roots for s are s = 1.44438 and s = 2.88685 and
find the corresponding eigenvalues in eV.

(vi) Use Maple to produce accurate plots of the ground and first excited states.

4. †Barrier penetration and transmission

Remember that there is a Maple worksheet to do most of the algebra of this
question. You can download it from
http://www-thphys.physics.ox.ac.uk/users/JohnWheater

A particle of mass m is incident with energy E < V0 from the region x < 0 on
the finite potential barrier

V (x) = 0 for x < 0, x > a
= V0 for 0 ≤ x ≤ a. (54)

Take the wavefunction in x < 0 to be

ψ1 = eikx +Re−ikx, (55)

in 0 ≤ x ≤ a to be
ψ2 = AeKx +Be−Kx (56)

and in x > a to be
ψ3 = Ceikx (57)

where K2 = 2m
h̄2 (V0 − E), k2 = 2mE/h̄2.

i) Is the wavefunction an energy eigenstate?
ii) Is the wavefunction a momentum eigenstate?
iii) From the boundary conditions at x = 0 deduce that

2 = A(1− iK

k
) +B(1 +

iK

k
) (58)

and from the boundary conditions at x = a deduce that

A =
1

2
e−Ka(1 +

ik

K
)eikaC (59)

and

B =
1

2
eKa(1− ik

K
)eikaC. (60)
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Substitute these expressions for A and B into the previous equation to show
that

C =
2e−ika

[2 coshKa− i
(
k
K
− K

k

)
sinhKa]

(61)

Hence show that the transmission coefficient (defined as the transmitted flux
divided by the incident flux) is

|C|2 =

(
1 +

(K2 + k2)2

4K2k2
sinh2Ka

)−1

, (62)

which can also be written as

|C|2 =

1 +
sinh2[v2(1− E/V0)]

1
2

4(E/V0)(1− E/V0)

−1

(63)

where v is as defined in Q 1, v = (2mV0a
2/h̄2)

1
2 .

iv) Compute the probability flux inside the barrier, ie from ψ2. [Hint: caution
- A and B are complex!] Compare your result with part iii).

v) Show that if E/V0 � 1 and v � 1, |C|2 is given approximately by

|C|2 ≈ 16E

V0

e−2v. (64)

This shows the characteristic exponential tunnelling probability: the amplitude
for waves with E < V0 is exponentially attenuated by the barrier (though of
course classical particles wouldn’t get through at all); it is analogous to the
evanescent waves in optics (e.g. in total internal reflection).

Suppose E = 1eV, V0 = 6eV and a = 1nm. By what factor will |C|2 change if
a increases to 1.1 nm?

The “Scanning Tunnelling Microscope” is just one application of quantum
tunnelling - see G. Binnig and H. Rohrer Reviews of Modern Physics 59 (1987)
615 (their Nobel lecture).

5. ††Transmission resonances

In Question 4 above, imagine the energy gradually increasing until it becomes
equal to V0. What is |C|2 when E = V0? Now suppose E becomes greater
than V0. Then K2 becomes negative, K → i|K| (or maybe −i|K|?) and
sinh2Ka→ (i sin |K|a)2, so

|C|2 →

1 +
sin2[v2(E/V0 − 1)]

1
2

4(E/V0)(E/V0 − 1)

−1

(65)
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(if you don’t like this, you can of course repeat the whole calculation from
scratch . . . ; there is a worksheet at
http://www-thphys.physics.ox.ac.uk/users/JohnWheater to do this too ).

Show that this new |C|2 is equal to unity when
[

2m
h̄2 (E − V0)

] 1
2 = nπ/a. What

does the wave in the region 0 ≤ x ≤ a look like at these values of E?

6. ††Time dependent packets; dispersion

A simple example of a time-dependent wave packet is provided by a super-
position of waves for which the frequency is proportional to the wavenumber:
ω = ck. Light, of course, is such a wave. Consider the packet

φ(x, t) =
1

2∆k

∫ ko+∆k

k0−∆k
eik(x−ct)dk (66)

(Note that φ(x, 0) is the packet in Question 5.3).

(i) Evaluate the integral and show that

|φ(x, t)|2 =
sin2[∆k(x− ct)]

[∆k(x− ct)]2
(67)

(as in Q5.3). For fixed t, at what x is |φ(x, t)|2 a maximum, and at what
values of x do the first zeros of |φ(x, t)|2 away from the maximum occur?
Sketch |φ(x, t)|2 for fixed t versus x.

Describe how the packet moves along in x as t varies. Does the shape of the
function |φ(x, t)|2 change?

Consider now the packet for fixed x, as t varies. Where is the maximum as
a function of t for fixed x, and where do the first minima on either side of it
occur? If the spread in the packet in time, “∆t”, is defined as the distance
between the first minima on either side of the central maximum, show that
∆ω “∆t” = 2π, where ∆ω = c∆k. Relate this to the uncertainty relation
∆E ∆t ≥ 1

2
h̄.

(ii) A time-dependent free-particle (plane wave) solution of the 1-D Schrödinger
equation is ψ(x, t) = N exp(ikx− iEt/h̄) where N is a normalization constant
and E = p2/2m = h̄2k2/2m = h̄ω. It follows that for these waves the fre-
quency ω is not proportional to k but to k2: ω = h̄k2/2m. This makes a
dramatic difference to the way a packet of these waves evolves with time: the
packet does not maintain its shape, but “flattens out”, a phenomenon called
dispersion (of the packet). Consider the packet

ψ(x, t) =
1

2∆k

∫ k0+∆k

k0−∆k
eikx−ih̄k

2t/2mdk (68)

(note that ψ(x, 0) is again the packet from Q5.3). This time the integral can
not be done in terms of elementary functions. However, if k0 � ∆k and the
t-term in the exponent is “not too big” we can expand “k2” about the point
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k = k0 by a Taylor series: k2 = k2
0 + (k − k0).2k0, and we are back to only

a linear term in the exponent, which can be integrated exactly. Show that in
this approximation

|ψ(x, t)|2 =
sin2[∆k(x− vt)]

[∆k(x− vt)]2
(69)

where v = h̄k0/m, and describe how this packet moves as t varies.
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